Multi-level stochastic approximation algorithms

Abstract

This paper studies multi-level stochastic approximation algorithms. Our aim is to extend the scope of the multi-level Monte Carlo method recently introduced by Giles [Oper. Res. 56 (2008) 607–617] to the framework of stochastic optimization by means of stochastic approximation algorithm. We first introduce and study a two-level method, also referred as statistical Romberg stochastic approximation algorithm. Then its extension to a multi-level method is proposed. We prove a central limit theorem for both methods and give optimal parameters. Numerical results confirm the theoretical analysis and show a significant reduction in the initial computational cost.

Publication
Annals of Applied Probability
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.