Concentration bounds for stochastic approximations

Abstract

We obtain non asymptotic concentration bounds for two kinds of stochastic approximations. We first consider the deviations between the expectation of a given function of an Euler like discretization scheme of some diffusion process at a fixed deterministic time and its empirical mean obtained by the Monte-Carlo procedure. We then give some estimates concerning the deviation between the value at a given time-step of a stochastic approximation algorithm and its target. Under suitable assumptions both concentration bounds turn out to be Gaussian. The key tool consists in exploiting accurately the concentration properties of the increments of the schemes. Also, no specific non-degeneracy conditions are assumed.

Publication
Electronic Communications in Probability
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.